
 
 

 

Abstract— The heterogeneous multi agent system is a system 
that cooperates intensively in one place by two or more agents and 
achieves the task. There is Genetic Network Programming as an 
automatic generation technique of the heterogeneous multi agent 
system. In this paper, the authors proposes IGNP and GNPIAM as 
automatic generation technique of the heterogeneous multi agent 
system. And the authors propose both co-evolution method and 
non-co-evolution method as agent's evolution method and compare 
the performance of two methods. 

I. INTRODUCTION 
Recently, the multi agent system is widely researched. The 

multi agent system is a system that solves the problem by using 
two or more agents. An individual agent perceives the 
environment and behaves to archive the task. The environment 
changes from a certain agent's behavior. The change of the 
environment decides another agent's behavior. In the multi agent 
system, the entire system is not collectively managed. The 
individual agent cooperates with other agents.  There is an 
advantage that the cost of the entire system is lower by such 
distributed management. The individual agent has two abilities of 
perception and operation. The perception ability is an ability to 
recognize the environment, and the operation ability is an ability 
to influence the environment. The action when the task is given 
to the agent is decided by the procedure of perception and 
operation. The action of the agent who achieves a simple task can 
be designed by the hand work. On the other hand, it costs a lot of 
time and the cost for the complex task. In addition, the design of 
the behavior of two or more agents becomes a more complex 
problem, and it is difficult in the hand work.  

The Genetic Network Programming (GNP)[1],[2] exists as a 
technique for generating the agent's behavior automatically. GNP 
is an improvement technique of Genetic Programming (GP)[1]. 
GNP has a network structure and can make the agent who can 
correspond to a dynamic environment that changes by the agent's 
behavior.  The evolution algorithm of GNP is the same as the one 
of Genetic Algorithm (GA). The initial convergence and poor 
local search capability are pointed out as the defect of GA. 
Evolutionary adaptation algorithms focusing on the workings of 

the immune system have been devised to improve the defect of 
GA. These are Immune Algorithm (IA)[3]and Genetic Algorithm 
with Immune Adjustment Mechanism  (GAIAM)[4].  Then, the 
author proposed Immune evolved Genetic Network 
Programming (IGNP)[5] that had used IA as an evolution 
algorithm of GNP in the past. In this paper, authors propose 
Genetic Network Programming with Immune Adjustment 
Mechanism (GNPIAM) that uses GAIAM.  

In the research of the past on the multi agent system that used 
GNP[6],[7], the one to raise efficiency by using two or more 
agents for the task that was able to be achieved by a single agent 
was the main.  However, the system that assumes the purpose of 
this research is not the one that raises efficiency as two or more 
agents and is the one that achieves the task as two or more agents 
cooperate and archive the task. The targeting task can’t be 
achieved by single agent and can be archived by multi agents. 

The heterogeneous multi agents system is the system by which 
an individual agent individually has the operation program. 
Authors propose both co-evolution technique and 
non-co-evolution technique as agent's evolution technique. 
Co-evolution technique is the method to which the evaluation 
value corresponding to the task contribution level is given to each 
agent, and each agent evolves individually. On the other hand, 
non-co-evolution technique is the method to which the whole 
evolves according to the evaluation value to which is given to the 
entire system. 

In this paper, authors compare both co-evolution method and 
non-co-evolution method using GNP, IGNP and GNPIAM. 

Authors describe GNP, IGNP and GNPIAM in chapter II, III and 
IV, respectively. And propose co-evolution technique and 
non-co-evololution technique as agent's evolution technique in 
chapter V. The proposed technique are experimented in chapter 
VI. In chapter VII, the conclusion is described. 

II. GNP: GENETIC NETWORK PROGRAMMING 

A. The Structure of GNP 
GNP[1],[2] is one of the automatic programming techniques 
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based on GP[2]. GP has the tree structure, it returns to the root in 
GP after it changes from the root to the terminal. Therefore, GP is 
suitable for study to a static environment. On the other hand, 
GNP uses the network structure. Because the state transition is 
done in the sub network, GNP is suitable for the study of a 
dynamic environment. Fig.1 shows the structure of GNP. GNP 
has start node, judgment node and processing node. The start 
node is displayed by a square in Fig.1 is a point where processing 
begins. The processing node is displayed by an open circle in 
Fig.1 is agent's operation part. The judgment node is displayed by 
a diamond in Fig.1 is agent's sensor.  

The network as the individual is composed of many nodes. 
Fig.2 shows the representation of the node. Each node consists 
node gene and connection gene.  

In the node gene, NTi is the type of the node, IDi is the function 
number of the node and di is the delay time takes to process the 
function of node i. If NTi =0, the node type is the processing node. 
If NTi =1, it is the judgment node. The network has the node 
library. The node library is shown in Fig.3.  If the number of 
processing is x and the number of judgment is y, x processing 
functions and y judgment functions are defined in the node 
library.   

In the connection gene, Cij   is the j-th connection from the node 
i. Ni

k shows the number of connections from the node i. When the 
node type is the processing node, Ni

k=1, because the processing 
node has only one connection. When the node type is the 
judgment node, Ni

k>=2, because the judgment node has several 
connections according to its condition. ijd  is the transition delay 
time that passes Cij from node i. 

The start node is defined node 0. 

B. Genetic operation of GNP 
The genetic operation of GNP is crossover and mutation. Fig.4 

shows the crossover.  As shown in Fig.4, the replacement of the 
nodes and changes the connections are done by replacing the 
specific area. Fig.5 shows the mutation. On the mutation, the 

connection between nodes is changed. 

C. Algorithm of GNP 
In this section authors describe the evolutionary algorithm of 

GNP.  
Step.1 Generation of an initial group of individuals 

 N individuals are generated for the initial group of 
individuals. 
Step 2 Calculation of fitness 

Fitness for each individual is calculated. The fitness is the 
evaluated value for the solution. And an elitist individual with the 
best fitness value in the population is found. 
Step 3 Selection 

Select parents for crossover by the tournament selection from 
N individuals. 
Step 4 Crossover and mutation 

Apply the crossover based on crossover probability Pc to the 
selected parents in Step 3.  Then, these undergo mutation based 
on mutation probability Pm.  
Step 5 Replacement 

Replace the newly generated population with the previous 
population. But the elitist individual found in Step 2 or Step 6 is 
preserved. 
Step 6 Calculation of fitness 

Fitness for each individual is calculated and an elitist 
individual with the best fitness value in the population is found. 
Step 7 Repetition of Steps 3 to 6 for a determined number of 
generations.  

III. IGNP: IMMUNE EVOLVED GENETIC NETWORK 
PROGRAMMING 

A. The outline of IGNP 
GNP uses GA as the evolutionary algorithm, but GA has the 

defects. IGNP[5] uses IA[3] as the evolutionary algorithm. IA is  

NTi IDi di Ci1 di1 Cij dij Ci di ni
k ni

k   
node gene connection gene 

node  i 

Fig. 2 The representation of the node

ID1  

: Processing function x 

ID2  : Processing function 2 

IDx  

: Processing function 1 

IDx+1  : Judgment function x+1

: Judgment function y IDy  

Fig. 3 The node library 

: start node 

: processing node

: judgment node 

Fig.1 The structure of the GNP 
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the evolutionary adaptation algorithms focusing on the 
workings of the immune system have been devised to improve 
the defect of GA. 

B. Algorithm of IGNP  
Step 1 Generation of an initial group of antibodies 

N antibodies are generated for the initial group of antibodies. 
The antibodies are the same as individuals for the GA and are 
solutions to an optimization problem. 
Step 2 Calculation of affinities 

Affinity axi (i= 1,…, N) for antigens are calculated. axi is set in 
accordance with the problem used. Affinity for the antigen is the 
same as fitness for GNP. 
Step 3 Differentiation into memory cells 

For details, see reference [3]. 
Step 4 Calculation of expected values 

The expected value ei (i= 1,…, N) for antibodies surviving into 
the next generation is calculated. 

i

i
i C

axe =                                                                         (1) 

Ci is the density of antibody i (i= 1,…, N). 

 ∑
=

=
N

j
jii ay

N
C

1
,

1                                                             (2) 

ayi,j is the similarity of antibodies i and j ( i = 1,…,N, j =1,…,N ) 
and is set appropriately depending on the problem used. N /2 
antibodies with low expected values are eliminated. However, 
the top 10% of antibodies with high affinities for antigens are 
excluded from elimination. 
Step 5 Antibody production 

New antibodies are produced in place of N / 2 antibodies 
eliminated in Step 4. New antibodies are produced by randomly 
determining their genes. 
Step 6 Crossover and mutation 

Antibodies are randomly selected, duplication permitted, from 
N antibodies and undergo crossover based on crossover 
probability Pc, producing N /2 antibodies. Then, these undergo 
mutation based on mutation probability Pm, and affinity for the 
antigen is calculated. 
Step 7 Repetition of Steps 3 to 6 for a determined number of 
generations. 

Because of Step 5, the IA avoided narrowing the search to 
local solutions. 

IV. GNPIAM: GENETIC NETWORK PROGRAMMING 
WITH IMMUNE ADJUSTMENT MECHANISM 

A. The outline of IGNPIAM  
GNPIAM uses GAIAM[4] as the evolutionary algorithm. 

GAIAM is an algorithm to take two features of immune system to 
GA. 

There are various antibodies present in the body. As antigens 
invade the body from the outside, antibodies corresponding to 
these antigens proliferate and eliminate the antigens. The 
immune system has the following 2 features: 
[Feature 1] Capacity to adapt to mutations in antigens 

Preparing matching antibodies for every antigen beforehand is 
difficult. When antibodies matching an antigen do not exist, the 
genes of the best matching antibodies respond by mutating. 
Antibodies adapted to the antigen are produced by repeated 
mutations of these genes. 
[Feature2] Mechanism to adjust antibodies via antibodies 

Proliferation of antibodies matching a given antigen is not 
unlimited; rather, antibodies recognize one another based on their 
structure. When a given antibody proliferates, inhibiting 
antibodies recognizing that antibody as an antigen also 
proliferate and respond. Overall, balance is maintained. 

B. Algorithm of GAIAM 
Step 1 Generation of an initial group of antibodies 

Same as Step 1 in the IGNP 
Step 2 Calculation of affinities 

Same as Step 2 in the IGNP 
Step 3 Calculation of expected values 

Same as Step 4 in the IGNP 

Fig.4  crossover 

mutation 

Fig.5 mutation 
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Step 4 Antibody production 
New antibodies are produced in place of N /2 antibodies 

eliminated in (3). N /2 are selected from surviving antibodies in 
accordance with expected values. Then, the N/2 antibodies selected 
are mutated, after which affinities for antigen are calculated. 
Step 5 Crossover and mutation 

Same as Step 6 in the IGNP 
Step 6 Adjustment of antibodies 

With respect to each antibody i of the N /2 antibodies newly 
produced in Step 5, antibody j with the greatest affinity for i are 
sought from among existing N antibodies. Of antibodies i and j,  
those with a high affinity for the antigen survives to the next 
generation while those with a low affinity are removed. 
Step 7 Repetition of Steps 3 to 6 for a determined number of 
generations. 

Step 4 models [Feature 1] of the immune system and Step 6 
models [Feature 2] of the immune system. With GNPIAM, 
antibodies with a high affinity for the antigen and low density 
tend to remain to maintain diversity. Moreover, such antibodies 
proliferate with GNPIAM; effective antibodies with a high 
affinity for the antigen are produced by mutation. That is, local 
search capability is improved. Moreover, narrowing of the search 
range is avoided by  Step 6. Thus, narrowing of the search to the 
vicinity of a single local solution is avoided. 

V. LEARNING OF THE HETEROGENEOUS MULTI 
AGENTS SYSTEM  

A. Heterogeneous multi agents system 
In the multi agents system, the entire system is composed by 

using two or more agents who move individually and 
autonomous. If the agent can cooperate mutually, the big task 
that won't be done in a single agent can be achieved. The multi 
agents system is divided into the heterogeneous multi agents[6] 
and homogeneous multi agents. In the heterogeneous multi 
agents, an individual agent has an individual operation program. 
On the other hand, all agents in the system have the same 
operation program in the homogeneous multi agents. The multi 
agents system that this research targets is the heterogeneous multi 
agents. In the text, the learning method of the heterogeneous 
multi agents is examined by using GNP, IGNP and GAIAM.  The 
author proposes both co-evolution technique and 
non-co-evolution technique as the learning method of the 
heterogeneous multi agents. 

B. Co-evolution heterogeneous multi agents 
In the heterogeneous multi agents, an individual agent has a 

directed graph individually. The directed graph here is the agent's 
operation program, and it is shown in Fig.1. By giving the 
evaluation value to an individual agent according to the 
contribution level to the task, the agent is individually evolved. It 
is thought that the agent with low contribution level can be 
studied to contribute to the task by giving the evaluation value to 
the individual agent. The co-evolution here is to mean, that is, the 

co-evolution in the agent group, and a certain agent's evolution 
influences another agent's evolution. Each agent learns own 
behavior by being influenced by other agents' behavior and 
co-evolving.  

The process of co-evolution is as follows.  
Step.1 The initial group is generated.  
Step.2 The initial group is divided into groups of the same 
number as agents, one individual is selected from each group, 
and the agent group is made (Fig.6). This agent group is not  
changed by the evolution processing. 
Step.3 The task is executed in the agent group.  
Step.4 The fitness of the individual agent is calculated according 
to the contribution level to the task.  
Step.5 Each agent group does the evolution processing. 
Step.6 Repetition of Steps 3 to 6 until it meets the end 
requirement. 

C. Non-co-evolution heterogeneous multi agents 
In non-co-evolution heterogeneous multi agents, but the 

individual agent individually has a directed graph, but the agent 
doesn't have the distinction according to the evaluation value. As 
shown in Fig.7, one directed graph is divided into two or more 
sub directed graphs. The number of sub graphs is the same as the 
number of agents. There is the start node in each sub graph, and 
the connection is not between sub graphs, and is sub graphs are 
independent. It is possible to think this heterogeneous multi agent 
to be one directed graph that includes sub graphs. One directed 
graph becomes one of the solution candidates of the entire multi 

Fig.7 agent group 
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agents system, and the evaluation value is given to the solution. 
Therefore, the evolution processing can be done just like usual 
GNP. 

VI. EXPERIMENT OF PROPOSED METHOD 

A. Tile World 
Authors experimented by using the tile world to evaluate the 

proposed methods.  The tile world is known well as an example 
of simulating a dynamic environment. As shown in Fig.8, the tile 
world is two-dimension lattice plane where agent, tile, floor, hole, 
and obstacle are arranged.  An individual division in the lattice is 
called a cell, and the agent can move by one cell at one unit time.  
In Fig.8, the agent, the tile, the hole and the obstacle are denoted 
by “A”, “T2”, an open circle and a full square, respectively. A 
blank cell in the tile world is a floor. In this experiment, weights 
are set to the tile for the cooperation of the agents. In Fig.8, the 
number after “T” shows the weights, and “T2” is a tile with two 
weights. Two agents are necessary to carry the tile with two 
weights.  In this tile world, the agents who corporate with others 
and drop the tile to the hole are made. Two agents gather in the 
cell of the tile, two agents grip the tile, and these move to the cell 
of the hole together. The tile falls into the hole in two agents' 
releasing the tile.  

B. Experiment Environment 
The experiment was executed by initial arrangement of Fig.8. 

There are one tile with two weights, one hole and two agents. 
Two agents' initial positions are the same.  

Table.1 shows the nodes used to the experiment. In Table.1, 
NT is the node type, d is delay time, and Nn is the number of 
nodes. On the judgment nodes, there are condition branching. 
Table.2 shows the condition branching of the judgment nodes. 
The delay time between nodes is assumed to be 0.  

The evaluation value of the agent in the tile world, that is, the 
fitness is calculated by the following equation. 

MoveAreaGrabTile

TileWeight
tInitialDis

LastDisttInitialDis
TileWeightDropTilefitness

×+×+

×
−

×+

××=

01.010

5

45

 

DropTile is number of tiles that agent dropped.  TileWeight is 
the weight of the tile. InitialDist is the shortest distance between 
the tile and the hole in the initial state. LastDist is the shortest 
distance between the tile and the hole after time limits passes. 
GrabTile is whether the tile is gripped after the time limit or not? 
MoveArea  is the number of cells that the agent moved. 45,5,10 
and 0.01 are the weight of each paragraph. The agents could drop 
the tile to the hole if the fitness exceeds 100. The agents were 
able to grip the tile if the fitness exceeds 10. Agents could take 
the tile to the hole if the fitness exceeds 20. Table.3 shows 
parameters of the experiment. 

 
 
 

Table.1 The nodes used to the experiment 
node name meaning NT d Nn
GO_FORWARD Go ahead by one cell. Processing 1 2 
GRAB Grab the tile Processing 1 3 
RELEASE Release the title Processing 1 3 
TURN_LEFT Turn left Processing 1 2 
TURN_RIGHT Turn right Processing 1 2 
NOP Nothing is done Processing 1 2 
HAVE_TILE Does the agent has the title? Judgment 2 1 
FIND_TILE Where is the tile? Judgment 6 2 
FIND_HOLE Where is the hole? Judgment 5 2 
FIND_AGENT Where is other agent? Judgment 5 1 
TRANS_FAIL Did the previous action fail? Judgment 2 2 

 
Table.2 The condition branching of the judgment nodes 

node name Nd answer 
HAVE_TILE 2 Yes, No 
FIND_TILE 5 upper, lower, left, right, prevent place 
FIND_HOLE 5 upper, lower, left, right, prevent place 
FIND_AGENT 5 upper, lower, left, right, prevent place 
TRANS_FAIL 2 Yes, No 

 
Table.3 Parameters of experiment 

 
 
 
 
 
 
 
 

C. Experiment results 
The learning result of the co-evolution heterogeneous multi 

agents using GNP, IGNP and GNPIAM is shown in Fig.9. And, 
each progress of ten trials is shown in Table.4 how the learning  is 
advanced.  

The learning result of the non-co-evolution heterogeneous 
multi agents using GNP, IGNP and GNPIAM is shown in Fig.10. 
And, each progress of ten trials is shown in Table.5 how the 
learning is advanced. 

generation number 500 
individual number 100 
limits time  2000 
mutation probability 0.01 
crossover probability 0.65 
trial number 10 

 

A  : agent 
 
T2 : tile with  

two weights
 

: hole 
 

: obstacle 

Fig.8 Tile world 
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Fig. 9 The Learning result of co-evolution method 

 
Table.4 Progress of the learning 
 GNP IGNP GNPIAM

 All  agents grip the tile. 7 10 10 
Agents move gripping the tile. 3 8 10 

Agents reache the cell of the hole.  0 2 5 
Agents drop the tile into the hole 0 1 1 

 

 
Fig. 10 The Learning result of non-co-evolution method 

 
Table.5 Progress of the learning 
 GNP IGNP GNPIAM

 All  agents grip the tile. 3 9 10 
Agents move gripping the tile. 1 6 9 

Agents reache the cell of the hole.  0 0 0 
Agents drop the tile into the hole 0 0 0 

 
In Fig.9 and Fig.10 “max” shows the transition of the 

evaluation value of times that obtain the maximum fitness of ten 
trials. “avg” is an average of the  fitness in ten trials. When 

considering it from Fig.9 and Fig.11, in the both methods of 
co-evolution and non-co-evolution,  IGNP and GNPIAM are 
more excellent than GNP. GNP is thought that it settles to the 
local solution, and the evaluation value did not go up. IGNP and 
GNPIAM is thought that these obtained better fitness because 
these search area is wide. IGNP and GNPIAM are compared by 
using Table.4 and Table.5. It is understood that the learning of 
GNPIAM is better than that of IGNP from Table.4 and Table.5. 
This is because the local search ability of GNPIAM is higher 
(describe in Chapter 3).  

When co-evolution and non-co-evolution are compared, 
co-evolution is more successful. In the non-co-evolution, the 
fitness of a certain agent becomes the fitness of the entire agent. 
Therefore, evolution settles if the agent with high fitness appears.  

VII. CONCLUSION 
The heterogeneous multi agents was learned by using GNP, 

IGNP and GNPIAM. The targeting task can’t be achieved by 
single agent and can be archived by multi agents. As a result, the 
learning of GNPIAM is the best. GNPIAM has the high local 
search ability and can search for wide area. The authors proposed 
the co-evolution and the non-co-evolution as the learning method 
of the heterogeneous multi agents. The co-evolution method is 
better than the non-co-evolution method.  

 The future work is that the method is improved and the agent 
who achieves the task by the higher percentage is made because 
of the task cannot be achieved in all the trials. 
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