

Abstract— The heterogeneous multi agent system is a system
that cooperates intensively in one place by two or more agents and
achieves the task. There is Genetic Network Programming as an
automatic generation technique of the heterogeneous multi agent
system. In this paper, the authors proposes IGNP and GNPIAM as
automatic generation technique of the heterogeneous multi agent
system. And the authors propose both co-evolution method and
non-co-evolution method as agent's evolution method and compare
the performance of two methods.

I. INTRODUCTION
Recently, the multi agent system is widely researched. The

multi agent system is a system that solves the problem by using
two or more agents. An individual agent perceives the
environment and behaves to archive the task. The environment
changes from a certain agent's behavior. The change of the
environment decides another agent's behavior. In the multi agent
system, the entire system is not collectively managed. The
individual agent cooperates with other agents. There is an
advantage that the cost of the entire system is lower by such
distributed management. The individual agent has two abilities of
perception and operation. The perception ability is an ability to
recognize the environment, and the operation ability is an ability
to influence the environment. The action when the task is given
to the agent is decided by the procedure of perception and
operation. The action of the agent who achieves a simple task can
be designed by the hand work. On the other hand, it costs a lot of
time and the cost for the complex task. In addition, the design of
the behavior of two or more agents becomes a more complex
problem, and it is difficult in the hand work.

The Genetic Network Programming (GNP)[1],[2] exists as a
technique for generating the agent's behavior automatically. GNP
is an improvement technique of Genetic Programming (GP)[1].
GNP has a network structure and can make the agent who can
correspond to a dynamic environment that changes by the agent's
behavior. The evolution algorithm of GNP is the same as the one
of Genetic Algorithm (GA). The initial convergence and poor
local search capability are pointed out as the defect of GA.
Evolutionary adaptation algorithms focusing on the workings of

the immune system have been devised to improve the defect of
GA. These are Immune Algorithm (IA)[3]and Genetic Algorithm
with Immune Adjustment Mechanism (GAIAM)[4]. Then, the
author proposed Immune evolved Genetic Network
Programming (IGNP)[5] that had used IA as an evolution
algorithm of GNP in the past. In this paper, authors propose
Genetic Network Programming with Immune Adjustment
Mechanism (GNPIAM) that uses GAIAM.

In the research of the past on the multi agent system that used
GNP[6],[7], the one to raise efficiency by using two or more
agents for the task that was able to be achieved by a single agent
was the main. However, the system that assumes the purpose of
this research is not the one that raises efficiency as two or more
agents and is the one that achieves the task as two or more agents
cooperate and archive the task. The targeting task can’t be
achieved by single agent and can be archived by multi agents.

The heterogeneous multi agents system is the system by which
an individual agent individually has the operation program.
Authors propose both co-evolution technique and
non-co-evolution technique as agent's evolution technique.
Co-evolution technique is the method to which the evaluation
value corresponding to the task contribution level is given to each
agent, and each agent evolves individually. On the other hand,
non-co-evolution technique is the method to which the whole
evolves according to the evaluation value to which is given to the
entire system.

In this paper, authors compare both co-evolution method and
non-co-evolution method using GNP, IGNP and GNPIAM.

Authors describe GNP, IGNP and GNPIAM in chapter II, III and
IV, respectively. And propose co-evolution technique and
non-co-evololution technique as agent's evolution technique in
chapter V. The proposed technique are experimented in chapter
VI. In chapter VII, the conclusion is described.

II. GNP: GENETIC NETWORK PROGRAMMING

A. The Structure of GNP
GNP[1],[2] is one of the automatic programming techniques

Heterogeneous Multi Agents Learning using Improved
Genetic Network Programming

Hirotaka Itoh Naoki Ikeda Kenji Funahashi
Nagoya Institute of Technology Nagoya University Nagoaya Institute of Technology

Gokiso-cho, Showa-ku, Furo-cho, Tikusa-ku, Gokiso-cho, Showa-ku,
Nagoya, Japan Nagoya , Japan Nagoya, Japan

e-mail: ht-itoh@nitech.ac.jp e-mail: icenine84@hotmail.com e-mail: kenji@nitech.ac.jp

1625

SA-E4-5 SCIS & ISIS 2008

based on GP[2]. GP has the tree structure, it returns to the root in
GP after it changes from the root to the terminal. Therefore, GP is
suitable for study to a static environment. On the other hand,
GNP uses the network structure. Because the state transition is
done in the sub network, GNP is suitable for the study of a
dynamic environment. Fig.1 shows the structure of GNP. GNP
has start node, judgment node and processing node. The start
node is displayed by a square in Fig.1 is a point where processing
begins. The processing node is displayed by an open circle in
Fig.1 is agent's operation part. The judgment node is displayed by
a diamond in Fig.1 is agent's sensor.

The network as the individual is composed of many nodes.
Fig.2 shows the representation of the node. Each node consists
node gene and connection gene.

In the node gene, NTi is the type of the node, IDi is the function
number of the node and di is the delay time takes to process the
function of node i. If NTi =0, the node type is the processing node.
If NTi =1, it is the judgment node. The network has the node
library. The node library is shown in Fig.3. If the number of
processing is x and the number of judgment is y, x processing
functions and y judgment functions are defined in the node
library.

In the connection gene, Cij is the j-th connection from the node
i. Ni

k shows the number of connections from the node i. When the
node type is the processing node, Ni

k=1, because the processing
node has only one connection. When the node type is the
judgment node, Ni

k>=2, because the judgment node has several
connections according to its condition. ijd is the transition delay
time that passes Cij from node i.

The start node is defined node 0.

B. Genetic operation of GNP
The genetic operation of GNP is crossover and mutation. Fig.4

shows the crossover. As shown in Fig.4, the replacement of the
nodes and changes the connections are done by replacing the
specific area. Fig.5 shows the mutation. On the mutation, the

connection between nodes is changed.

C. Algorithm of GNP
In this section authors describe the evolutionary algorithm of

GNP.
Step.1 Generation of an initial group of individuals

 N individuals are generated for the initial group of
individuals.
Step 2 Calculation of fitness

Fitness for each individual is calculated. The fitness is the
evaluated value for the solution. And an elitist individual with the
best fitness value in the population is found.
Step 3 Selection

Select parents for crossover by the tournament selection from
N individuals.
Step 4 Crossover and mutation

Apply the crossover based on crossover probability Pc to the
selected parents in Step 3. Then, these undergo mutation based
on mutation probability Pm.
Step 5 Replacement

Replace the newly generated population with the previous
population. But the elitist individual found in Step 2 or Step 6 is
preserved.
Step 6 Calculation of fitness

Fitness for each individual is calculated and an elitist
individual with the best fitness value in the population is found.
Step 7 Repetition of Steps 3 to 6 for a determined number of
generations.

III. IGNP: IMMUNE EVOLVED GENETIC NETWORK
PROGRAMMING

A. The outline of IGNP
GNP uses GA as the evolutionary algorithm, but GA has the

defects. IGNP[5] uses IA[3] as the evolutionary algorithm. IA is

NTi IDi di Ci1 di1 Cij dij Ci di ni
k ni

k
node gene connection gene

node i

Fig. 2 The representation of the node

ID1

: Processing function x

ID2 : Processing function 2

IDx

: Processing function 1

IDx+1 : Judgment function x+1

: Judgment function y IDy

Fig. 3 The node library

: start node

: processing node

: judgment node

Fig.1 The structure of the GNP

1626

crossover

the evolutionary adaptation algorithms focusing on the
workings of the immune system have been devised to improve
the defect of GA.

B. Algorithm of IGNP
Step 1 Generation of an initial group of antibodies

N antibodies are generated for the initial group of antibodies.
The antibodies are the same as individuals for the GA and are
solutions to an optimization problem.
Step 2 Calculation of affinities

Affinity axi (i= 1,…, N) for antigens are calculated. axi is set in
accordance with the problem used. Affinity for the antigen is the
same as fitness for GNP.
Step 3 Differentiation into memory cells

For details, see reference [3].
Step 4 Calculation of expected values

The expected value ei (i= 1,…, N) for antibodies surviving into
the next generation is calculated.

i

i
i C

axe = (1)

Ci is the density of antibody i (i= 1,…, N).

 ∑
=

=
N

j
jii ay

N
C

1
,

1 (2)

ayi,j is the similarity of antibodies i and j (i = 1,…,N, j =1,…,N)
and is set appropriately depending on the problem used. N /2
antibodies with low expected values are eliminated. However,
the top 10% of antibodies with high affinities for antigens are
excluded from elimination.
Step 5 Antibody production

New antibodies are produced in place of N / 2 antibodies
eliminated in Step 4. New antibodies are produced by randomly
determining their genes.
Step 6 Crossover and mutation

Antibodies are randomly selected, duplication permitted, from
N antibodies and undergo crossover based on crossover
probability Pc, producing N /2 antibodies. Then, these undergo
mutation based on mutation probability Pm, and affinity for the
antigen is calculated.
Step 7 Repetition of Steps 3 to 6 for a determined number of
generations.

Because of Step 5, the IA avoided narrowing the search to
local solutions.

IV. GNPIAM: GENETIC NETWORK PROGRAMMING
WITH IMMUNE ADJUSTMENT MECHANISM

A. The outline of IGNPIAM
GNPIAM uses GAIAM[4] as the evolutionary algorithm.

GAIAM is an algorithm to take two features of immune system to
GA.

There are various antibodies present in the body. As antigens
invade the body from the outside, antibodies corresponding to
these antigens proliferate and eliminate the antigens. The
immune system has the following 2 features:
[Feature 1] Capacity to adapt to mutations in antigens

Preparing matching antibodies for every antigen beforehand is
difficult. When antibodies matching an antigen do not exist, the
genes of the best matching antibodies respond by mutating.
Antibodies adapted to the antigen are produced by repeated
mutations of these genes.
[Feature2] Mechanism to adjust antibodies via antibodies

Proliferation of antibodies matching a given antigen is not
unlimited; rather, antibodies recognize one another based on their
structure. When a given antibody proliferates, inhibiting
antibodies recognizing that antibody as an antigen also
proliferate and respond. Overall, balance is maintained.

B. Algorithm of GAIAM
Step 1 Generation of an initial group of antibodies

Same as Step 1 in the IGNP
Step 2 Calculation of affinities

Same as Step 2 in the IGNP
Step 3 Calculation of expected values

Same as Step 4 in the IGNP

Fig.4 crossover

mutation

Fig.5 mutation

1627

Step 4 Antibody production
New antibodies are produced in place of N /2 antibodies

eliminated in (3). N /2 are selected from surviving antibodies in
accordance with expected values. Then, the N/2 antibodies selected
are mutated, after which affinities for antigen are calculated.
Step 5 Crossover and mutation

Same as Step 6 in the IGNP
Step 6 Adjustment of antibodies

With respect to each antibody i of the N /2 antibodies newly
produced in Step 5, antibody j with the greatest affinity for i are
sought from among existing N antibodies. Of antibodies i and j,
those with a high affinity for the antigen survives to the next
generation while those with a low affinity are removed.
Step 7 Repetition of Steps 3 to 6 for a determined number of
generations.

Step 4 models [Feature 1] of the immune system and Step 6
models [Feature 2] of the immune system. With GNPIAM,
antibodies with a high affinity for the antigen and low density
tend to remain to maintain diversity. Moreover, such antibodies
proliferate with GNPIAM; effective antibodies with a high
affinity for the antigen are produced by mutation. That is, local
search capability is improved. Moreover, narrowing of the search
range is avoided by Step 6. Thus, narrowing of the search to the
vicinity of a single local solution is avoided.

V. LEARNING OF THE HETEROGENEOUS MULTI
AGENTS SYSTEM

A. Heterogeneous multi agents system
In the multi agents system, the entire system is composed by

using two or more agents who move individually and
autonomous. If the agent can cooperate mutually, the big task
that won't be done in a single agent can be achieved. The multi
agents system is divided into the heterogeneous multi agents[6]
and homogeneous multi agents. In the heterogeneous multi
agents, an individual agent has an individual operation program.
On the other hand, all agents in the system have the same
operation program in the homogeneous multi agents. The multi
agents system that this research targets is the heterogeneous multi
agents. In the text, the learning method of the heterogeneous
multi agents is examined by using GNP, IGNP and GAIAM. The
author proposes both co-evolution technique and
non-co-evolution technique as the learning method of the
heterogeneous multi agents.

B. Co-evolution heterogeneous multi agents
In the heterogeneous multi agents, an individual agent has a

directed graph individually. The directed graph here is the agent's
operation program, and it is shown in Fig.1. By giving the
evaluation value to an individual agent according to the
contribution level to the task, the agent is individually evolved. It
is thought that the agent with low contribution level can be
studied to contribute to the task by giving the evaluation value to
the individual agent. The co-evolution here is to mean, that is, the

co-evolution in the agent group, and a certain agent's evolution
influences another agent's evolution. Each agent learns own
behavior by being influenced by other agents' behavior and
co-evolving.

The process of co-evolution is as follows.
Step.1 The initial group is generated.
Step.2 The initial group is divided into groups of the same
number as agents, one individual is selected from each group,
and the agent group is made (Fig.6). This agent group is not
changed by the evolution processing.
Step.3 The task is executed in the agent group.
Step.4 The fitness of the individual agent is calculated according
to the contribution level to the task.
Step.5 Each agent group does the evolution processing.
Step.6 Repetition of Steps 3 to 6 until it meets the end
requirement.

C. Non-co-evolution heterogeneous multi agents
In non-co-evolution heterogeneous multi agents, but the

individual agent individually has a directed graph, but the agent
doesn't have the distinction according to the evaluation value. As
shown in Fig.7, one directed graph is divided into two or more
sub directed graphs. The number of sub graphs is the same as the
number of agents. There is the start node in each sub graph, and
the connection is not between sub graphs, and is sub graphs are
independent. It is possible to think this heterogeneous multi agent
to be one directed graph that includes sub graphs. One directed
graph becomes one of the solution candidates of the entire multi

Fig.7 agent group

1-1

1-2

1-n

2-1

2-2

2-n

p-1

p-2

p-n

group of
agent 1

group of
agent 2

group of
agent p

solution 1

solution 2

solution n

Fig.6. The agent’s grouping

1628

agents system, and the evaluation value is given to the solution.
Therefore, the evolution processing can be done just like usual
GNP.

VI. EXPERIMENT OF PROPOSED METHOD

A. Tile World
Authors experimented by using the tile world to evaluate the

proposed methods. The tile world is known well as an example
of simulating a dynamic environment. As shown in Fig.8, the tile
world is two-dimension lattice plane where agent, tile, floor, hole,
and obstacle are arranged. An individual division in the lattice is
called a cell, and the agent can move by one cell at one unit time.
In Fig.8, the agent, the tile, the hole and the obstacle are denoted
by “A”, “T2”, an open circle and a full square, respectively. A
blank cell in the tile world is a floor. In this experiment, weights
are set to the tile for the cooperation of the agents. In Fig.8, the
number after “T” shows the weights, and “T2” is a tile with two
weights. Two agents are necessary to carry the tile with two
weights. In this tile world, the agents who corporate with others
and drop the tile to the hole are made. Two agents gather in the
cell of the tile, two agents grip the tile, and these move to the cell
of the hole together. The tile falls into the hole in two agents'
releasing the tile.

B. Experiment Environment
The experiment was executed by initial arrangement of Fig.8.

There are one tile with two weights, one hole and two agents.
Two agents' initial positions are the same.

Table.1 shows the nodes used to the experiment. In Table.1,
NT is the node type, d is delay time, and Nn is the number of
nodes. On the judgment nodes, there are condition branching.
Table.2 shows the condition branching of the judgment nodes.
The delay time between nodes is assumed to be 0.

The evaluation value of the agent in the tile world, that is, the
fitness is calculated by the following equation.

MoveAreaGrabTile

TileWeight
tInitialDis

LastDisttInitialDis
TileWeightDropTilefitness

×+×+

×
−

×+

××=

01.010

5

45

DropTile is number of tiles that agent dropped. TileWeight is
the weight of the tile. InitialDist is the shortest distance between
the tile and the hole in the initial state. LastDist is the shortest
distance between the tile and the hole after time limits passes.
GrabTile is whether the tile is gripped after the time limit or not?
MoveArea is the number of cells that the agent moved. 45,5,10
and 0.01 are the weight of each paragraph. The agents could drop
the tile to the hole if the fitness exceeds 100. The agents were
able to grip the tile if the fitness exceeds 10. Agents could take
the tile to the hole if the fitness exceeds 20. Table.3 shows
parameters of the experiment.

Table.1 The nodes used to the experiment
node name meaning NT d Nn
GO_FORWARD Go ahead by one cell. Processing 1 2
GRAB Grab the tile Processing 1 3
RELEASE Release the title Processing 1 3
TURN_LEFT Turn left Processing 1 2
TURN_RIGHT Turn right Processing 1 2
NOP Nothing is done Processing 1 2
HAVE_TILE Does the agent has the title? Judgment 2 1
FIND_TILE Where is the tile? Judgment 6 2
FIND_HOLE Where is the hole? Judgment 5 2
FIND_AGENT Where is other agent? Judgment 5 1
TRANS_FAIL Did the previous action fail? Judgment 2 2

Table.2 The condition branching of the judgment nodes

node name Nd answer
HAVE_TILE 2 Yes, No
FIND_TILE 5 upper, lower, left, right, prevent place
FIND_HOLE 5 upper, lower, left, right, prevent place
FIND_AGENT 5 upper, lower, left, right, prevent place
TRANS_FAIL 2 Yes, No

Table.3 Parameters of experiment

C. Experiment results
The learning result of the co-evolution heterogeneous multi

agents using GNP, IGNP and GNPIAM is shown in Fig.9. And,
each progress of ten trials is shown in Table.4 how the learning is
advanced.

The learning result of the non-co-evolution heterogeneous
multi agents using GNP, IGNP and GNPIAM is shown in Fig.10.
And, each progress of ten trials is shown in Table.5 how the
learning is advanced.

generation number 500
individual number 100
limits time 2000
mutation probability 0.01
crossover probability 0.65
trial number 10

A : agent

T2 : tile with

two weights

: hole

: obstacle

Fig.8 Tile world

1629

Fig. 9 The Learning result of co-evolution method

Table.4 Progress of the learning
 GNP IGNP GNPIAM

 All agents grip the tile. 7 10 10
Agents move gripping the tile. 3 8 10

Agents reache the cell of the hole. 0 2 5
Agents drop the tile into the hole 0 1 1

Fig. 10 The Learning result of non-co-evolution method

Table.5 Progress of the learning
 GNP IGNP GNPIAM

 All agents grip the tile. 3 9 10
Agents move gripping the tile. 1 6 9

Agents reache the cell of the hole. 0 0 0
Agents drop the tile into the hole 0 0 0

In Fig.9 and Fig.10 “max” shows the transition of the

evaluation value of times that obtain the maximum fitness of ten
trials. “avg” is an average of the fitness in ten trials. When

considering it from Fig.9 and Fig.11, in the both methods of
co-evolution and non-co-evolution, IGNP and GNPIAM are
more excellent than GNP. GNP is thought that it settles to the
local solution, and the evaluation value did not go up. IGNP and
GNPIAM is thought that these obtained better fitness because
these search area is wide. IGNP and GNPIAM are compared by
using Table.4 and Table.5. It is understood that the learning of
GNPIAM is better than that of IGNP from Table.4 and Table.5.
This is because the local search ability of GNPIAM is higher
(describe in Chapter 3).

When co-evolution and non-co-evolution are compared,
co-evolution is more successful. In the non-co-evolution, the
fitness of a certain agent becomes the fitness of the entire agent.
Therefore, evolution settles if the agent with high fitness appears.

VII. CONCLUSION
The heterogeneous multi agents was learned by using GNP,

IGNP and GNPIAM. The targeting task can’t be achieved by
single agent and can be archived by multi agents. As a result, the
learning of GNPIAM is the best. GNPIAM has the high local
search ability and can search for wide area. The authors proposed
the co-evolution and the non-co-evolution as the learning method
of the heterogeneous multi agents. The co-evolution method is
better than the non-co-evolution method.

 The future work is that the method is improved and the agent
who achieves the task by the higher percentage is made because
of the task cannot be achieved in all the trials.

REFERENCES

[1] K.Hirasawa, M.Okubo, H.Katagiri, J.Hu and J.Murata, "Comparison
between Genetic Network Programming and Genetic Programming Using
Evolution of Ant's Behaviors (in Japanese)", The Transactions of the
Institute of Electrical Engineers of Japan, Vol.121-C, No.6, pp.1001-1009,
2001

[2] T.Murata, T.Nakamura, “Genetic Network Programming with
Automatically Defined Groups for Assigning Proper Roles to Multiple
Agents”, Proceedings of Genetic and Evolutionary Computation (GECCO
2005), pp.25-29, pp.1705-1712, 2005

[3] K.Mori, M.Tsukiyama and T.Fukuda, “Immune Algorithm with Searching
Diversity and its Application to Resource Allocation Problem”, The
Transactions of the Institute of Electrical Engineers of Japan, Vo1.113-C
No.10, pp. 872-878, 1997

[4] H.Itoh, “Genetic Algorithm with Immune Adjustment Mechanism”,
Proceedings of the 3rd IASTED Conference Computational Intelligence,
pp.79-84,2007

[5] H.Itoh, T.Mase, Y.Iwahori, “Agent Learning using Immune Evolved
Genetic Network Programming”, Transactions of the Institute of Electrical
Engineers of Japan , Vol.125-C, No.4, pp.537-5442005

[6] K.Hirasawa, M.Okubo, J.Hu, J.Murata and Y.Matsuya, "Co-evolution of
Heteo-Multiagent Systems Using Genetic Network Programming",
Transactions of the Institute of Electrical Engineers of Japan,, Vol.123-C,
No.3, pp.544-551, 2003.

[7] T.Eguchi, K.Hirasawa and T.Furuzuki, “Construction of Symbiotic
Evolutional Model in Multiagent Systems”, IPSJ TOM , Vol.45, No.SIG2,
pp144-156, 2004

1630

