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SUMMARY

In this paper we extend the application of neural
network-based photometric stereo founded on the principle
of empirical photometric stereo to color images proposing
a method for computing both the normal vectors of a target
object and its color reflectance coefficients. This method is
able to render objects that have non-Lambert reflectance
properties without using any parametric reflectance func-
tion as a reflectance model. In addition, we propose a novel
neural network-based rendering method that allows the
generation of realistic virtual images of an object with
arbitrary light source direction and from arbitrary view-
points based on the physical reflectance properties of the
actual object and perform a comparative evaluation with
approximations by existing models, the Phong model, and
the Torrance–Sparrow model. © 2007 Wiley Periodicals,
Inc. Electron Comm Jpn Pt 2, 90(12): 47–60, 2007; Pub-
lished online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/ecjb.20423
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1. Introduction

In the fields of computer vision and mixed reality,
research was originally focused primarily on monochrome
grayscale images; in recent years, however, color images
have gradually become the focus of such work [1–4].

With a fixed single viewpoint, Woodham [5] pro-
posed a method known as photometric stereo for estimating
local surface normal vectors for the surface of an object
from multiple grayscale images taken under different light
source conditions; in addition, he proposed [6] empirical
photometric stereo, a method that does not assume a func-
tion for the reflectance properties of the surface of an object
and does not require information of the light source direc-
tions. These methods also fix the viewpoint while the
images are taken under different directions of the light
source.

Iwahori and colleagues have previously developed a
neural network-based photometric stereo method [7, 8].
This method is based on empirical photometric stereo [6]
by training a neural network on a sphere with the same
surface reflectance properties as the test object; it is possible
to obtain the normal vectors for the surface of the object
and monochrome reflectance coefficients without assum-
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ing any parametric function for the reflectance properties
of the surface of the object nor explicitly using a value for
the lighting directions. However, since the method given in
Ref. 8 makes use of an assumption that the reflectance
factor is a constant parameter proportional to the reflec-
tance property function, there is a problem remaining in that
areas of the sharp specular reflections give some errors in
the surface normal obtained due to the effects of this specu-
lar reflectance.

Against this background, in this paper we first extend
the neural network-based photometric stereo to color im-
ages and then such that it can be applied to objects that give
rise to sharp specular reflections. Both Refs. 9 and 10 have
proposed photometric stereo for color images; however,
there are problems and limitations such that the former uses
a particular color light source while the latter assumes
completely diffuse reflectance (Lambert reflectance). Our
proposed method uses a standard white light source and is
applicable to objects with non-Lambert reflectance proper-
ties. In addition to extending photometric stereo to color
images, the method also extends to objects on which sharp
specular reflections arise.

Model rendering, on the other hand, consists of the
creation of virtual images of an object given a mathematical
formulation of the reflectance properties on the object’s
surface as a parametric reflectance function (such as the
Phong model) and the geometric shape of the object. In Ref.
11 a range finder was used to reconstruct the three-dimen-
sional shape of an object and by assuming a Torrance–Spar-
row model as the surface reflectance function of the object,
a method was proposed to estimate its parameters from a
color image of the object. In this paper we propose a neural
network-based rendering method that generates the appear-
ance of an object using the viewing direction vector, the
light source direction vector, the object’s surface normal
vector, and color reflectance coefficients as an inverse
system of neural network-based photometric stereo. This
method makes no use of any parametric reflectance func-
tion and can generate realistic virtual images of an object
from arbitrary viewpoints and based on arbitrary lighting
directions.

2. Principles of Dichromatic Reflectance
Model and Neural Network-Based

Photometric Stereo

2.1. The dichromatic reflectance model

With substances such as plastic, incident rays (the
illuminating rays) can be reflected in one of two ways. First
they can result in a diffuse reflectance, the illuminating rays
enter the inside of the object from the object’s surface and

undergo a modulation according to the inherent reflectivity
rate of the substance and then the reflected rays are pro-
jected uniformly in all directions. The color of these re-
flected rays is treated as the standard color of the object.
Another type of reflection is specular reflectance; due to
relations of the inflection rate between the media, the rays
do not enter the inside of the object and are reflected on the
surface. Since these incident rays do not enter the object,
they do not undergo any absorption and the reflecting rays
are projected as a direct specular reflection along the sur-
face normal vector. Since specular reflections do not un-
dergo the influence of the reflecting substance, they are the
same color as the light source. The observed light is a linear
sum of these two types of ray and can be expressed as
follows [12]:

Here E is the grayscale value observed, Ew is the intensity
of the light source, and ρ is the reflectivity rate (the reflec-
tion coefficient). The first term represents the diffuse reflec-
tion component while the second term represents the
specular reflection component. d and m are the mixing
proportions; these are used to express the differences in
color by location on the image. d and m are the coefficients
of the surface normal vector n = (nx, ny, nz), the light source
direction vector l = (lx, ly, lz) and the viewing direction
vector v = (vx, vy, vz). In other words we may write

Here Rd and Rm represent the diffuse reflection component
and the specular reflection component respectively of the
reflectance properties.

2.2. Neural network-based photometric stereo

This method proposed in Ref. 8 involves fixing the
location of the camera and the object and estimating the
gradients and the reflectance coefficients of the object’s
surface from four monochrome grayscale images taken
under four different light source directions. However, here
the normal vectors and reflectance coefficients are esti-
mated without computing the precise directions of the light
sources.

From Eq. (2), when the light source direction and
viewing direction are fixed, variation in brightness values
will be due to differences in the direction of the surface
normal vector. In other words, when the light source direc-
tion and viewing direction are fixed, then Eq. (2) becomes

and when we have four observations each taken with a
different light source direction, then the following set of
photometric image equations can be established:

(1)

(2)

(3)
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The neural network-based photometric stereo method con-
structs a radial basis function neural network (RBF-NN)
that takes {E1, E2, E3, E4} as input and produces {n, ρ} as
output [13]. Here in using monochrome grayscale images,
ρ will be a scalar value from 0 to 1. RBF-NN is able to
perform nonlinear nonparametric approximation. There-
fore, we are able to estimate the surface normal vector n
and the reflectance coefficient ρ from the set of four bright-
ness values without the need to assume a particular para-
metric form of the reflectance function. The observation
environment is shown in Fig. 1 and the structure of this
RBF-NN is shown in Fig. 2.

The neural network is trained by using images of a
sphere with the same reflectance properties as the object
that we intend to perform reconstruction for. The neural
network is able to sufficiently learn the relationship be-
tween the surface normal vectors and the brightness levels
by using a sphere for training since in addition to the fact
that the surface normal vectors of the sphere can be com-
puted easily from its radius and the image coordinates, the
sphere also possesses all different kinds of surface normal
vectors. For training data we select a single value for the
reflectance coefficient ρ from the set of values 1.0, 0.8, 0.6,
and 0.4 and then combine this value of ρ with four images
consisting of a set of brightness levels for identical pixels
{ρE1, ρE2, ρE3, ρE4} and take this as input and then set the
surface normal vector and reflectance coefficient
{nx, ny, nz, ρ} as output and construct training data from
various different points in the image of the sphere. NN then
learns the relationship between the set of brightness levels
and the corresponding surface normal vector for various
different settings of the reflectance coefficient. We con-
struct the training set for the neural network by sampling
uniformly from the space on the hemisphere with various

surface normal vectors as the outputs. These training data
are used to train the neural network.

When estimating the surface normal vectors of the
object and the reflectance coefficients, we give the set of
four grayscale values for the same pixel {E1, E2, E3, E4}
from four images of the object that were taken with the same
light source directions as the sphere used in the trained
neural network. NN outputs the local surface normal vector
and the reflectance coefficient. By performing this proce-
dure for all pixels of the object, we are able to obtain the
surface normal vectors and reflectance coefficients for the
object in the image.

3. Neural Network-Based Color
Photometric Stereo

3.1. Applying neural network-based
photometric stereo to color images

When photometric stereo is applied to the surface
with completely diffuse reflection (Lambert reflectance),
the reflectance coefficients and surface normal vectors can
be determined analytically from three grayscale images [6].
When the reflectance coefficients of the target object are
non-Lambert with nonuniform reflectance in general, these
can be estimated using four or more images from the
viewpoint of unknown parameters and nonlinear simulta-
neous equations. In Ref. 8, four images are used, based on
this reasoning. When applying photometric stereo to color
images in this work we also use four different images taken
with four different directions for the light source in order to
estimate the reflectance coefficients and the surface normal
vectors as given in Ref. 8.

Equation (1) showing the reflection model for the
bicolor case is rewritten as the following equation when
applied to color images:

Here E = {ER, EG, EB} are the RGB values for an image,
Ew = {EwR, EwG, EwB} are the intensities of the light source,
and r = {ρR, ρG, ρB} are the color diffuser reflectance

Fig. 2. RBF-NN for monochrome photometric stereo.

Fig. 1. Observation setup system 1.

(5)

(4)
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coefficients. As in the monochrome case, when the light
source directions and the viewpoint directions are fixed, we
can write

Here CL represents the RGB value for the light source color.
We can extend photometric stereo to color images on the
basis of Eq. (6).

Constructing a neural network that can compute the
surface normal vectors and color diffuse reflectance coeffi-
cients simultaneously from the set of brightness values as
in the monochrome neural network-based photometric ste-
reo, would require a large amount of training data and is
unrealistic. If the training data consisted of images repre-
sented in 24 bits (full color), then there are already around
167 million possible color diffuse reflectance coefficient
combinations and the scope of training is 65,536 times
greater than that of the monochrome case. When we con-
sider how these would combine with the surface normal
vectors, the training scope becomes extremely large and it
is clearly impractical to extend the monochrome method
directly to the case of color images in terms of both the
amount of training data required and the amount of time
needed for training. Therefore, in order to perform training
efficiently we introduce the two-step neural network and
propose a method whereby the color diffuse reflectance
coefficients and the surface normal vectors are computed
using separate neural networks.

3.2. A neural network to estimate color
reflectance coefficients

As shown in Fig. 3 we use an RBF-NN that is
constructed such that  the inputs are given as
{E1R, E1G, E1B, E2R, E2G, E2B, E3R, E3G, E3B, E4R, E4G, E4B}
and the outputs obtained are {ρR, ρG, ρB} in order to com-
pute the color diffuse reflectance coefficients. Both the
input and output values are color RGB values.

The training data are constructed using images of a
sphere as in the original method. We need to create these
training data to be a uniform sampling from the whole space
of values that can be obtained, but it is physically impossi-
ble to actually give diffuse reflectance coefficients with
different RGB values to the sphere. In addition, it is not
desired to require the taking of images of spheres of various
different colors. Therefore, the sphere used for the training
is white (r = {1, 1, 1}) but we set the color reflectance
coefficients r as follows to be r′ whereby each pixel is
randomly assigned a coloration:

Here rand is a uniform random variable (a real number)
between 0 and 1. Using Eqs. (5), (6), and (7), we also
transform the set of brightness values into the following E′
that reflects the effects of randomly generated color reflec-
tance coefficients:

When applying this coloration, it is necessary first to
partition each of the brightness level values of the images
of the sphere used for training into a diffuse reflectance
component Rd and a specular reflectance component Rm. In
the method presented here we partition the reflectance
components of the images of spheres in the following
manner. We make use of four color images taken under four
different light source directions and also four more color
images of the same sphere from a different viewpoint (a
total of eight images). Even if the light source directions are
not given explicitly as long as they are fixed, then if the
viewpoint is changed significantly the locations in which
specular reflections occur will also change significantly; in
addition, the diffuse reflectance component that does not
depend on viewing direction will remain constant. Based
on these conditions and prior knowledge of shape consist-
ing of the sphere, we are able to determine the diffuse
reflectance component by observing corresponding points
in the two images between the viewpoint change, and take
the darker pixel value for each light source. Depending on
the surface material, specular reflectance components may
be observed over a fairly wide range but in order to perform
the decomposition of components into diffuse reflectance
and specular reflectance as described in this paper, the
specular component must be somewhat sharp. This is a
condition on the objects to which the method can be ap-
plied. Figure 17 shows an example of the appearance of the
decomposition of reflectance components for the images of
spheres used for training with a randomly selected RGB
reflectance coefficient added based on r′.

To train the neural network we make use of images
of the sphere that have random reflectance coefficients. The

(7)

(8)

Fig. 3. RBF-NN for reflectance coefficient estimation.

(6)
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training data consist of inputs {E1R
g , E1G

g , E1B
g , E2R

g , E2G
g ,

E2B
g , E3R

g , E3G
g , E3B

g , E4R
g , E4G

g , E4B
g } and outputs correspond-

ing to the color reflectance coefficient for each of these
pixels {ρR

g , ρG
g , ρB

g }; the neural network is then trained on
the sphere with various different points.

When estimating the color reflectance coefficients
for an object, we input the set of RGB values for each pixel
in four images of the target object taken with the same four
l ight source directions as used for  the sphere
{E1R, E1G, E1B, E2R, E2G, E2B, E3R, E3G, E3B, E4R, E4G, E4B}
to the trained neural network. Color reflectance coefficient
will be obtained for each pixel as output. By applying this
procedure to all pixels on the object, we can obtain all the
color reflectance coefficients.

3.3. A neural network to compute surface
normal vectors

We now describe the neural network for computing
the surface normal vectors. When estimating the surface
normal vectors, the color image is converted into a mono-
chrome image using the following equation. This equation
is generally used when converting color images into mono-
chrome (grayscale) images:

However, the grayscale transformation resulting from this
equation makes the dynamic range of the blue and the red
small. With neural network-based photometric stereo, the
larger the dynamic range is, the easier it is to learn the
grayscale variations. Therefore, for each light source direc-
tion, we assume that the grayscale value is proportional to
the maximum of the RGB values and transform the color
image to a grayscale image using the following equation:

We then train the neural network taking the maximum value
among the RGB components as the monochrome value for
the corresponding pixel.

We could consider a method that uses the original
RGB values for input to the neural network; however, by
using the color RGB values instead of the grayscale values,
a larger amount of training data will be needed and conse-
quently it may result in a lower precision.

Figure 4 shows the structure of a neural network that
uses the grayscale values to estimate surface normal vec-
tors. The neural network has a structure that allows the set
of grayscale values {E1, E2, E3, E4} to be given as input and
the surface normal vector {nx, ny, nz} to be obtained as
output. In this way, since we convert to monochrome im-
ages as were used in the original method, we are able to
have the neural network estimate surface normal vectors for
color images without any hindrance.

This neural network learns the mapping between the
set of grayscale values and the surface normal vectors; there
we add the random monochrome reflectance coefficients
with 256 levels (8 bits) to a white sphere used for training.
Training is performed by creating training data that consist
of sets of grayscale values of the image of the sphere
{E1

g , E2
g , E3

g , E4
g} to which are randomly added monochrome

reflectance coefficients corresponding to the diffuse reflec-
tance components as inputs and surface normal vectors
{nx, ny, nz} that correspond to this pixel as outputs.

When estimating the surface normal vectors for an
object we transform four color images of the object in
monochrome images and input the set of brightness levels
for each pixel {E1, E2, E3, E4} into the trained neural
network. This results in the estimate of the surface normal
vector corresponding to this pixel being output. By per-
forming the procedure for all pixels on the object, we can
obtain the distribution of surface normal vectors for the
object.

3.4. Positioning of this method

Our method implements empirical photometric ste-
reo that does not make explicit use of information regarding
the direction of the light source using a neural network. In
order to create the training data for the neural network, we
partition the image of a sphere into the diffuse reflectance
component and the specular reflectance component and
then randomly add a reflectance coefficient to the diffuse
reflectance component fusing these together; here, we de-
compose the reflectance components using prior knowl-
edge of shape of the sphere and features of the diffuse
reflectance. This method makes use of a general assump-
tion, namely, the dichromatic reflection assumption, but
specifically does not assume a parametric characteristic
reflectance function to describe the specular reflectance. In
general decomposing the reflectance components of an
object of unknown shape is difficult using only the assump-
tion of dichromatic reflection when the light source direc-
tion is not given explicitly, and the diffuse reflectance

(9)

Fig. 4. RBF-NN for estimating vector surface normal
vector.

(10)
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coefficients and the surface normal vectors cannot be cal-
culated analytically.

An empirical approach to solve this problem that is
not analytically solvable under the condition that the light
source direction is not given explicitly and no parametric
function is assumed for the reflectance properties has been
given in Ref. 6 whereby the relationship between the actual
observed intensities and surface normal vectors is mapped
using a look-up table. Neural network-based photometric
stereo (Refs. 7, 8, and this paper) extends the method of
Ref. 6 by training a neural network to allow generalization.

4. Neural Network-Based Rendering

4.1. A neural network used in rendering

Here as an application to mixed reality, we describe
a method for generating virtual images of an object from an
arbitrary viewpoint and with an arbitrary light source direc-
tion using obtained surface normal vectors and the color
reflectance coefficients.

The neural network-based photometric stereo de-
scribed above is a method for estimating the diffuse reflec-
tance coefficients and the surface normal vectors of an
object; however, the neural network can also be used for the
appearance of the object with realistic images generated.
We refer to this as neural network-based rendering.

Neural network-based rendering is a method for gen-
erating realistic virtual images of an object from an arbi-
trary viewpoint and with an arbitrary light source direction
without assuming any parametric function characterizing
the reflections as in the Phong model or the Torrance–Spar-
row model.

From Eq. (2) we see that the brightness of a given
pixel is determined by the angles formed by the light source
direction vector l, the surface normal vector n, and the
viewpoint direction vector v. The incident angle i, the
emittance angle e, and the phase angle g are each functions
of n, l, and v given respectively by the following equations:

The reflectance property R can be expressed as a
function of i, e, and g shown in Fig. 5 and the diffuse
reflectance coefficients r:

Here since the objects have a dichromatic reflection, we
estimate E using the following equation decomposing the
reflection into the specular component Rm and the diffuse
component Rd and calculating each separately:

Since Rd can be computed analytically as the inner product
n ⋅ l = cos i of the surface normal vector n obtained via
photometric stereo and the explicitly specified light source
direction vector l, the neural network is used simply to
estimate the term Rm. We construct a neural network that
takes i, e, and g that depend on l, n, and v as input and give
as the output Rm consisting of the RGB value for each point
of the object. This neural network is shown in Fig. 6.

4.2. Creating training data and neural
network-based generalization

Since only the specular reflectance component is
estimated using the neural network, there is no need to train
the network for the diffuse reflectance component. Conse-
quently, the neural network training procedure differs from
that used for photometric stereo and is performed using
only white sphere images. The training data are created by
sampling various different combinations of i, e, and g. Here
the ranges that these angles can take are as follows:

In order to create sufficient training data, we use images of
the sphere from seven different directions as shown in Fig.
7. The light source is on the xz plane and the angle between
the straight lines from the origin to the light source for
adjacent locations is every 15°. In addition, as in the case

(12)

(13)

(11)

(15)

Fig. 5. Incident angle i, emittance angle e, and phase
angle g.

(14)

Fig. 6. RBF-NN used for neural network-based
rendering.

(16)
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of photometric stereo, we decompose the image of the
sphere into a specular reflectance component and a diffuse
reflectance component.

The training data consist of sets of inputs {i, e, g} and
the corresponding specular reflectance component of the
pixel of the sphere {Rm} as output sampled for various
different points of the image of the sphere. It is clearly
straightforward to have i and e take a variety of different
values and varying the location of the light source as shown
in Fig. 7 enables us to create a variety of different combi-
nations of i and e with seven different types of g thereby
allowing sufficient combinations for training data. In gen-
eral, g can take values in the range shown in Eq. (16);
however, in this paper we created training data with g in the
range 0 ≤ g ≤ 90. Although it is not a substantial problem,
if it is necessary to generate images with a value of g greater
than 90°, then it would suffice to increase the number of
distinct light source locations to 12. We use these training
data to train the neural network.

When generating a virtual image of an object using
the trained neural network, we use Eq. (13) to compute {i,
e, g} from the light source direction vector l, the surface
normal vector n, and the viewing direction vector v for each
pixel in the image and then give these as input to the neural
network. This results in the specular reflectance component
for the pixel Rm as output. By using this Rm, the correspond-
ing Rd and the color reflectance coefficients {ρR, ρG, ρB}
obtained from the neural network in Fig. 4, we can obtain
the RGB value for the pixel via Eq. (15). By repeating this
procedure for each pixel in the object, we are able to create
a virtual image of the object.

4.3. Generating virtual images from different
viewpoints

To generate images in which the viewpoint has been
changed (these are equivalent to images in which the object
and the light source have undergone a rotation), it is not
sufficient simply to have the neural network generalize the
reflectance function; rather, in order to generate images in
which the object is rotated, it is necessary to obtain surface

normal vectors and color reflectance coefficients for each
pixel of the object in the pose to be generated.

Therefore, we first compute the object’s height dis-
tribution by integrating the surface normal vectors obtained
from the photometric stereo. We then create another height
distribution in a different pose by rotating the height distri-
bution over the x, y, and z axes. In addition, we compute the
surface normal vectors and color diffuse reflectance coeffi-
cients by determining correspondences between object
point during rotation. By giving the intended light source
direction and the values of i, e, and g computed from the
surface normal vectors after the rotation as input to the
neural network, we obtain the specular reflection compo-
nent for each corresponding pixel and then the RGB values
for each pixel from Eq. (15).

5. Experiments and Discussion

In this work we also performed an evaluation of the
precision and merits of neural network-based color
photometric stereo based on the approach of Ref. 15. The
following experiments were performed on an Ath-
lonXp2500+ machine with main memory of 512 MB; we
used MATLAB to train the neural network.

5.1. Simulation experiments with neural
network-based photometric stereo

5.1.1. Color diffuse reflectance coefficients

Figures 18(a) to 18(d) show four input images (the
target object for reconstruction is a sphere). In order to
perform a quantitative evaluation of the precision of the
proposed method, these images of spheres were created
using the Torrance–Sparrow model. Without assuming the
reflectance function or the light source direction informa-
tion explicitly, neural network-based photometric stereo is
used for evaluation. We set the number of training examples
for the neural network to approximately 2000, the number
of training iterations was 400, and the spread constant was
0.4. Training took approximately 15 minutes while diffuse
reflectance coefficients took approximately 10 seconds to
be estimated.

Figure 18(e) shows the color of the object displaying
the color diffuse reflectance coefficient estimated by neural
network-based photometric stereo as RGB values. We com-
pute the error between the RGB values of the estimated
reflectance coefficients (a real-valued vector normalized
over the range 0 to 1) and the theoretical value as

Here ERGB is the vector of the RGB values of the estimated
reflectance coefficients, TRGB is the vector of theoretical

Fig. 7. Observation setup system 2.

(17)
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values, and N is the number of pixels in the target object.
The average RGB error with 256 levels is between 10 and
15; this corresponds to when the error values were aiming
for between 0.0391 and 0.0586, and the actual error was
0.0373. This result confirms that reconstruction for color
diffuse reflectance coefficients was performed with a high
level of precision.

5.1.2. Surface normal vectors

Unlike the previous method given in Ref. 8, the
proposed method adopts a dichromatic reflection model
that allows it to deal with sharp specular reflections. There-
fore, we compare the estimation accuracy of the proposed
method and previous method over a region of sharp specu-
lar reflections.

Both methods make use of a neural network with the
structure shown in Fig. 4; in these experiments as with the
previous method we did not make use of a dichromatic
reflection model and also used Eq. (9) to transform images
into monochrome. The previous method does not assume a
dichromatic color model. In addition, we performed train-
ing for both methods using a set of 2000 examples, the
number of training iterations was 400, and the spread
constant was 0.4. The training time for both methods was
approximately 10 minutes; the estimation of surface normal
vectors took approximately 10 seconds for both methods.

The estimation results using the proposed method are
shown in Fig. 8. Panel (a) shows larger angles between the
surface normal vector and the viewpoint direction vector
with a brighter coloring. Panel (b) depicts the directional

gradient of the object’s aspect. The estimation results using
the previous method are shown in Fig. 9.

We aimed for a higher precision value than that of the
previous method [8]. While the average angle of error for
the previous method was 2.310°, the proposed method
could estimate the angle with an error of 0.371°. The use of
the dichromatic reflection model resulted in an improve-
ment in the precision for the object where sharp specular
reflections occurred.

Errors were large for the previous method on the
region where sharp specular reflections occurred. The re-
flectance property model for the previous method is

and since this does not comply with the dichromatic reflec-
tion model, in regions where a sharp specular reflection
occurs, errors appear due to the influence of specular reflec-
tions on the corresponding surface normal vectors. In con-
trast, the proposed method is able to perform better
estimation in these regions as well without a large error
arising. With the proposed method the error angle for
estimated vectors in regions with specular reflections was
also around 0.4° giving a higher accuracy than the previous
method.

We next conducted estimation experiments using
color images themselves. The estimation results are shown
in Fig. 10. The overall precision gives an average error angle
of 19.630°; this is significantly worse than the proposed
method. Smooth estimation errors were obtained even in
the vicinity of boundaries between diffuse and specular
reflections but overall an error that drew the surface normal
vectors toward the viewing direction occurred. When color
RGB values are input to the neural network, a significantly
larger amount of training data is required compared to when
monochrome grayscale values are used; as a result, the
estimation precision becomes low. This confirms that by
converting these values to monochrome grayscale values
and then estimating the surface normal vectors, estimation
is performed efficiently in terms of both training time and
precision.

Fig. 8. Results of the proposed method. (a) Slope; 
(b) aspect.

Fig. 9. Results of the previous method [8]. (a) Slope;
(b) aspect.

(18)

Fig. 10. Results of the proposed method using color
RGB values as input. (a) Slope; (b) aspect.
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5.1.3. Relationship between reflection
component decomposition accuracy and
estimation precision

In order to create training data for the proposed
method, we decompose the reflection components in train-
ing images of a sphere. We performed experiments to
evaluate what effect the accuracy with which this decom-
position was performed had on the precision with which the
surface normal vectors are estimated.

The proposed method treats objects on which sharp
specular reflections occur; however, we now evaluated the
error when we had erroneously decomposed the reflection
component setting it up to 50 percent larger than its actual
value and as low as 50 percent less than this. The results are
shown in Fig. 11. The horizontal axis shows the proportion
of error in the decomposition of the specular reflection
component while the vertical axis shows the average and
the maximum error angle given this error in the decompo-
sition. From these results we can see that while an error of
plus or minus 10 percent away from the true specular
reflection component does not produce a significant change
in the estimation results, a larger error in this decomposition
of the components will result in a large error in the estima-
tion errors around boundary regions of specular reflection.

5.2. Experiments using neural network-based
color photometric stereo with real objects

Figure 17(a) shows one of the images of a sphere used
for training; this image was decomposed in its diffuse
reflection components [Fig. 17(b)] and its specular reflec-
tion components [Fig. 17(c)] and color reflectance coeffi-
cients were added to it at random [Fig. 17(d)] and then the
neural network training was performed. In the training of
both the neural network for computing color reflectance

coefficients and the neural network for computing surface
normal vectors we used approximately 1000 training data
sets, 400 training iterations, and a spread constant of 0.4.
The training took approximately 15 minutes for each of
these networks and the estimation of both the surface nor-
mal vectors and the color reflectance coefficients took
approximately 10 seconds in each case.

Figures 19(a) to 19(d) show four of the images of the
object used as input. The object used in these experiments
was a glazed ceramic container. The surface of the sphere
used in training was coated with the same type of paint in
order to create the same reflectance properties. These ex-
periments were performed with the assumption that inter-
reflections and cast shadows did not occur.

Figures 12 and 19(e) show the results of the neural
network-based photometric stereo. Color diffuse reflec-
tance coefficients and surface normal vectors are estimated
also for a real object.

However, in the clothing or wrinkles seen in human
forms there are regions that are locally concave and there-
fore the effects of interreflection may arise; as a result there
may be some slight errors in the neural network-based
photometric stereo. In addition, parts that have shadows
cast on them by the nose or the cheekbones are also theo-
retically in a similar manner. This is because no secondary
reflections or cast shadows will arise on the sphere used in
training. The problem of cast shadows is another issue and
is not dealt with in this paper; however, it would be possible
to obtain some improvements by also applying a method
such as the illumination planning method proposed by
Fukui and colleagues [14].

5.3. Evaluation of the accuracy of neural
network-based rendering using spheres

Next we evaluated the accuracy of our proposed
method for neural network-based rendering. Since it is not
possible to perform a quantitative evaluation with a real

Fig. 11. Relation between the precision of decomposing
of components and the estimated results.

Fig. 12. (a) Slope and (b) aspect estimated by the
proposed method.
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object of unknown shape, we used a known shape, a sphere,
to perform these experiments and compared the rendering
results with the Torrance–Sparrow model and the Phong
model. Figure 13(a) shows real images taken of the sphere
used here. The light source direction l here is l = (0.36, 0.31,
0.88); this is not one of the directions used during the
training of the neural network. During the training of the
neural network we use images of the sphere taken with
seven different light source directions. The training data
consist of approximately 1000 examples, the number of
training iterations was 200, and the spread constant was set
to 0.4. The training took approximately 10 minutes. Given
the results obtained from the neural network-based color
photometric stereo, we estimated the parameters for the
Torrance–Sparrow model and the Phong model by using the
least squared method on the seven images of the sphere used
for training the neural network. It was assumed that these
parameters were constant over the whole sphere. The geo-
metric decay coefficient was estimated as G = 1, the Fresnel
reflection coefficient as F = 1.06, and σ representing the
roughness of the object’s surface as 0.0272. The parameter

representing sharpness of the specular reflections in the
Phong model was n = 289.

The results of rendering with the proposed model, the
Torrance–Sparrow model, and the Phong model are shown
in Figs. 13(b) to 13(d). Figure 14 shows the results of
displaying the brightness distribution for the specular re-
flection regions of each of the images in terms of height.
The mean error in the specular reflection region for the
proposed model was 0.005 while its variance was 0.075.
The mean error for the Torrance–Sparrow model was 0.093
with a variance of 0.102; the mean error of the Phong model
was 0.102 with a variance of 0.058.

The results of the evaluation were that the proposed
method generated quantitatively better results than the
Phong model and the Torrance–Sparrow model.

5.4. Experiments generating virtual images
with an arbitrary light source

We performed experiments generating images of the
target object with a light source direction that was entirely
different from the directions used in the images of spheres

Fig. 14. Specular reflection region. (a) Real image; (b)
proposed method; (c) Torrance–Sparrow model; (d)

Phong model. Fig. 16. Height distribution.

Fig. 15. Residual between real and virtual image with
an arbitrary light source direction.

Fig. 13. (a) Real image of sphere. (b) Image estimated
by proposed method, (c) estimated by Torrance–Sparrow

model, and (d) estimated by Phong model. 
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Fig. 17. (a) Image of a sphere used for training. (b) Diffuse reflection component. (c) Specular reflection component.
(d) Example with randomly added reflection coefficient.

Fig. 18. (a–d) Four input images; (e) the resulting color reflectance coefficient. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Fig. 19. (a–d) Four input images; (e) the resulting color reflectance coefficient. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Fig. 20. (a) Virtual image generated by the proposed method; (c) Torrance–Sparrow model virtual image; (d)–(f) virtual
images from arbitrary viewpoints; (b, g) real images. [Color figure can be viewed in the online issue, 

which is available at www.interscience.wiley.com.]
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for training. The light source direction of the image gener-
ated was l = (–0.55, 0.35, 0.75) (this was not a light source
direction that occurred in the training data).

Figure 20(a) shows the results of rendering with the
proposed method. The time for rendering an image of 340
× 160 pixels was approximately 2 to 3 seconds. Figure 20(b)
shows the real image with this light source direction. The
difference between Figs. 20(a) and 20(b) is shown in Fig.
15. The average error between Figs. 20(a) and 20(b) is 0.073
with a variance of 0.067. For comparative purposes we
show the results of rendering with the Torrance–Sparrow
model in Fig. 20(c). The average error between Figs. 20(c)
and 20(b) is 0.140 with a variance of 0.185.

Slight differences between the image generated by
the proposed method, as with the other models, can be seen
when there are local interreflections and cast shadows.
Except for these points, it is confirmed that the trained
neural network is able to generate virtual images that have
a different light source direction than that of the training
data.

5.5. Experiments generating virtual images
with arbitrary viewpoints

Figure 16 shows the height distribution of the object
obtained by integrating the surface normal vectors obtained
from the neural network-based photometric stereo. From
the results of neural network-based color photometric ste-
reo for the target object in various different poses, we
computed the integrals and performed a reciprocal rotation
of each height distribution and examined the concordance
rate of these; from the fact that for areas with continuous
height the error was within 3 percent, we judged that these
height distributions that we had integrated and created were
a suitable shape. We then rotated these height distributions
to generate images in different poses.

We set the light source direction as l = (0.40, –0.05,
0.92) and generated virtual images with the viewing direc-
tion being varied; these results are shown in Figs. 20(d) to
20(f). Figure 20(g) shows the actual object after a rotation
(the viewpoint was changed); Fig. 20(f) is a virtual image
for the corresponding viewpoint. The results of evaluating
the error using Eq. (16) for Figs. 20(d) to 20(f) were an
average error of 0.059 with a variance of 0.010. On the other
hand, the Torrance–Sparrow model results in an average
error of 0.084 with a variance of 0.017. Based on a com-
parison of the precision of our proposed method and that in
Ref. 8, we have obtained better results for both the surface
normal vectors and the surface reflectance coefficients for
our method. In addition, as shown by Fig. 14 and the results
of the precision comparison with the Torrance–Sparrow
model, realistic virtual images can be generated due to the

generalization capacity of the neural network-based reflec-
tion characteristic function working effectively.

6. Considerations from a Practical
Perspective

The proposed method has extended a previous
method to allow it to be applied to color images, but in its
requirement that a sphere with the same reflectance prop-
erties as the target object be prepared for the training of the
neural network it remains unchanged. Either of the follow-
ing methods could be used to prepare a sphere for training
purposes.

• Creating a sphere from the same material as the
target object

• Painting the sphere and the target object with the
same paint

If the composition and the material used in the target object
are known, then it is possible to create a sphere with the
same material. In addition, if the surface of the target object
is coated in paint, then we can create the same surface
reflectance properties by coating the sphere in the same
paint. However, there will be cases where we do not know
the material from which the object is made and the surface
of the object cannot be coated in paint. For objects for which
we cannot create a sphere to be used as reconstruction
targets, we require a method for creating training data that
does not require the preparation of a sphere.

In previous work, self-calibration neural network-
based photometric stereo has been proposed as an attempt
at finding a method that does not require a sphere [16].
Self-calibration is a method for generating training data for
the neural network based on the application of geometric
constraints and optical constraints on multiple images taken
while rotating the object around one of its axes. However,
the training data generated by this method is designed to be
used with monochrome neural network-based photometric
stereo [8] and it would be difficult to apply it directly to the
method presented here. From a practical perspective, based
on the approach presented in Ref. 16, the development of a
method that does not require a sphere for training is an
important issue and one we leave for future work.

7. Conclusion

In this paper we have extended neural network-based
photometric stereo to allow its application to color images
and presented a method for estimating the surface normal
vectors of a target object as well as its color reflectance
coefficients. This method does not make use of a parametric
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function to characterize the reflection of the object simply
using the general assumption of a dichromatic reflection
model. In addition, by splitting the neural network into two
stages, we have been able to avoid an explosion in the
amount of combinations that must be used as training data,
and been able to perform training with the same scale of
training data and the same amount of time as the previous
method while achieving higher estimation accuracy.

In addition, based on the results of neural network-
based color photometric stereo, we have proposed a neural
network-based rendering method to enable the generation
of virtual images of an object with an arbitrary light source
direction and from an arbitrary viewpoint. The results of
comparisons of these virtual images that we have generated
with the actual images, confirmed that we were able to
render specular reflections with a higher level of accuracy
than models using a parametric reflectance function.

However, since the proposed method assumed that
cast shadows and interreflections do not occur on the target
object, these problems are left to future work. Besides this,
future work will include reconstruction and virtual image
generation for the entire circumference of the object and the
development of a method that does not make use of a sphere
in training.
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